Speedrunning the Lakehouse

A composable FaaS over object storage

CDMS@VLDB
09.05.25

Ciao, I’'mJacopo!

| Co-founderand CTO at Bauplan.
Backed by IE, SPC, Wes McKinney, Spencer Kimball, Chris Re et al.

| Started the “Reasonable Scale” movement.
Co-founder at Tooso and lead Al at TSX:CVO after the acquisition.

| 10 yearsup and down the stackin R&D, product, open source
ICML, KDD, VLDB, NAACL, sigiR, WWW et al, >2k stars, >50M+ dowhloads.

https://www.kmworld.com/Articles/News/News/Coveo-acquires-Tooso-combining-AI-with-ecommerce-132919.aspx

It takes a (distributed) village

| Matt, Ciro, Luca, Nate, Vlad (and others, unfortunately without a chibi) share with
me the credit for whatevervalue these ideas may have.

It takes a (distributed) village

| Obviously, all the remaining mistakes are theirs -

‘pauplanis [a system] fully built using
composable principles(...). It is
refreshing to learn about areal-life
system bullt using such architectural
orinciples.”

Reviewer #2

@ speed-run
/'spéd ran/

verb

gerund or present participle: speedrunning

complete (a video game, or level of a game) as fast as possible.

'l used to be able to speedrun this game in less than 20 minutes’

Super Mario Bros. (1985])

Super Mario Series

NTERIA NES SNES WiiVC +14

J¢ Category extensions @ Discord

Leaderboards News 8 Guides 42 Resources 44

‘ol

B—

Any% Warpless Any% All-Stars Warpless All-Stars

| Version

NTSC s

' 2= Filters

AR Show rules T|me

il
| Player Time

¥ _ 4m 54s 565ms

o E£= avergell O 4m 54s 748ms

4dm 54s 748ms

= Tree_05 ®) 4m 54s 864ms

4dm 54s 864 ms

Speedrunning a Lakehouse? Really?

| Dremio 2BUSD
| Snowflake 668
|
|

Databricks 100B

Fabric 7?77B

Speedrunning a Lakehouse? Really?

Bauplan ‘

Dremio

Databrick |

|

|

| Snowflake
|

| Fabric

1. Simplicity
2. Composability

@ 4:17:01(17?1)

> YouTube - —+ Create Al

SPARK ARCHITECTURE

Worker Node

FExecutor

Driver program

SparkContext (Wﬂ

Worker Neode

Executor

Cache

Task

P Pp| o 19:38/41701 @B O (= o 7

-Tutorial (From Zero to Hero) _Masterclass
m From Ansh Lamba Big Data Cloud c >

@ Ansh Lam.ba Join w 75 48K CJ 2> Share 1 Download
UP 46.6K subscribers All In One RMM Solution

} G
nininOne Qle,,

=) Mo (mental) models, mo problems

Interaction

Traditional DLH

Batch pipeline
Dev. pipeline
Inter. query

Infrastructure

Submit API

Notebook Session
Web Editor (JDBC Driver)

One-off cluster

Dev. cluster
Warehouse

Y

N

Viay

Eudoxia: a FaaS scheduling simulator for the composable

lakehouse
Tapan Srivastava’ Jacopo Tagliabue® Ciro Greco
tapansriv@uchicago.edu jacopo.tagliabue@bauplanlabs.com ciro.greco@bauplanlabs.com
University of Chicago Bauplan Labs Bauplan Labs

Chicago, Illinois, USA
ABSTRACT

Due to the variety of its target use cases and the large API surface
area to cover, a data lakehouse (DLH) is a natural candidate for
a composable data system. Bauplan is a composable DLH built
on “spare data parts” and a unified Function-as-a-Service (FaaS)
runtime for SQL queries and Python pipelines. While Faa$S simplifies
both building and using the system, it introduces novel challenges
in scheduling and optimization of data workloads. In this work,

g N TR e L W e T N e R TNT T

New York, USA

New York, USA

data lake and warehouse, such as cheap and durable foundation
through object storage, compute decoupling, multi-language sup-
port, unified table semantics, and governance [19].

The breadth of DLH use cases makes it a natural target for the
philosophy of composable data systems [23]. In this spirit, Bauplan
is a DLH built from “spare parts” [31]: while presenting to users a
unified API for assets and compute [30], the system is built from
modularized components that reuse existing data tools through
novel interfaces: e o Arrow fracments for differential cachine [29]

pip 1nstall bauplan

bauplan checkout my-branch
bauplan run

“Simplex Sigillum Veri”

A sample pipeline

transactions euro_selection usd_by_ country

def usd_by country(
df=euro selection

13 44 US 144 13 T

def euro selection(
144 13 T df=transactions 146] T E

146] T df —
_df = ~

transform_input(df)

transform_input(df) return df

return df

High-level view of a bauplan run

USER BAUPLAN AWs CUSTOMER AWS

|] [l WORKER #2

3)77’__\—‘_—» WORKER. #i
(2)

|
|
|
i
DATA CATALOG | FILES
l

CLI/ SDK

Control Plane

Data Plane

High-level view of a bauplan run

CUSTOMER AWS

DATA CATALOG FILES

. WORKER #2
l puBLiC APls I 3)7_‘_‘2_% ——
’r
10 AR
[=< HD

CLlI/ SDK

Control Plane

Data Plane

Pipelines are chained functions (Batch / Dev)

functions

S3readf

S3Swritef

def euro selection(
df=euro _selection

) :
~df = transform _input(df)
return _df

user fl

~

>
AAPACﬁERow>>>

def usd by country(
df=euro_selection

) :
_df = transform_input(df)
return _df

userf’Z \

e

@ ‘ N
A
\funcUons//

Queries are chained functions as well!

functions

S3readf

Flight server

a

<

functions

N

4

Everythingis a function, or “OnlyFaas”™

| Easytoreasonabout

- Simple abstractions, "looks like
code”

- Aunified compute model,
“everythingis afunction”

VLDB 2023: Building a serverless Data Lakehouse from spare parts

PROs: one mental model to rule them all

| Canwere-use existing FaaS? NO!!!

- RGSOUI’CG |ImltatIOﬂS Interaction UX Ipﬁ'ﬁ\s\truc/ttffe\
) . Traditional DLH \ /
- No "DAG awareness Batch pipeline _ Submit API .
Dev. pipeline Notebook Session ev. cluster
- S | oW fe e d b aC k | 00 p Inter. query Web Editor (JDBC Driver) arehou

Middleware 2024: Bauplan: zero-copy. scale-up FaaS for data pipelines

https://arxiv.org/abs/2410.17465

CONs: we need anew a FaaS-for-data

| New programming model

- Expressdataand code dependencies P UX Inffastructiife,
. Traditional DLH N y
| N ewruntime Batch pipeline Submit API One-off cluster
| | Dev. pipeline Notebook Session ev. cluster
- Functionlife CyC|e Inter. query Web Editor (JDBC Driver) arehou

- Scheduling

Middleware 2024: Bauplan: zero-copy. scale-up FaaS for data pipelines

https://arxiv.org/abs/2410.17465

New programming model

LAY

\Q,

clear “division of labor”
between platform and users

New programming model

[bau.py

@bauplan.model(materialize=True)

@bauplan.python(
II3.1@II,
pip={"polars": "0.8.8"}

{ bau.py

@bauplan.model ()
@bauplan.python(

"3.11",

pip=1"polars": "1.33.0"}%

)
def usd by country(

data=bauplan.Model("euro selection™)

)

def euro selection(
data=bauplan.Model (
"transactions",
columns=["1d", "usd", "country"],
filter="eventTime BETWEEN 2023-01-01 AND

2023-02-01"
)

aggregation here

return a dataframe
return _df

filtering here
return a dataframe
return _df

New programming model

User code here!

@bauplan.model(materialize=True)
@bauplan.python(

@bauplan.model ()

@bauplan.python(
"3.11", "3.10",

"1.33.0"% pip={"polars": "0.8.8"}

pip=1"polars":
)
def euro_selection(
data=bauplan.Model (

"transactions",
columns=["1d", "usd", "country"], # aggregation here

filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return df
)

usd by country(
data=bauplan.Model("euro selection™)

filtering here
return a dataframe
return _df

New programming model

Signature Table(s)->Table

@bauplan.model(materialize=True)
@bauplan.python(

@bauplan.model ()

@bauplan.python(
"3.11", "3.10",

pip=1"polars": "1.33.0"}% pip={"polars": "0.8.8"}

)

def euro_selection(
data=bauplan.Model (

"transactions",
columns=["1d", "usd", "country"], # aggregation here

filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return df
)

usd by country(
data=bauplan.Model("euro selection™)

filtering here
return a dn'[;afr

wf U W1 T e Wl WG

me

el Il

return _df

New programming model

Infra-as—-code

@bauplan.model(materialize=True)
@bauplan.python(

@bauplan.model ()

@bauplan.python(
"3.11", "3.10",

"1.33.0"% pip={"polars": "0.8.8"}

pip=1"polars":
)
def euro_selection(
data=bauplan.Model (

"transactions",
columns=["1d", "usd", "country"], # aggregation here

filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return df
)

usd by country(
data=bauplan.Model("euro selection™)

filtering here
return a dataframe
return _df

New programming model

/O chaining
baupy

nlan.model () @bauplan.model(materialize=True)

@bau
@bauplan.python(

@bauplan.python(
"3.11", "3.10",

pip=71"polars”: "1.33.0"}% pip={"polars": "0.8.8"}

)
<Cifleuro_selection[l usd_by_country (
SEYEE EO A E M e[@curo_selection

data=bauplan.Model (

"transactions",
columns=["1d", "usd", "country"], # aggregation here

filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return df
)

filtering here
return a dataframe
return _df

New runtime

we can’tjust “run user functions”, which
IS a challenge and opportunity

pauplanrun =

plan

+
environment
+

_ datamovement

/

Planning

USER CODE PLATFORM CODE

[bau.py

@bauplan.model ()
@bauplan.python(

”3.11” | _
pip={"polars": "0.8.8"}

) docer

def euro selection(

data=bauplan.Model (
"transactions",
columns=["1d", "usd", "country"],
filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"

)

) :

filtering here
return a dataframe
return _dtf

Planning

g . '. , .
s S
4 s y \
1o d Ve
F ';' 4 4 ’ ' P/
; 4 '/ E / 4 v

V4 g 7
y 7 4/ /4) ,///— / |
& £ s ' *

N\ / s 7/ s ~ 4 .

Physical

APACHE APACHE s

.. ARROW ARROW /

» »

CDMS@VLDB2025: Daglakehouse planning with an ephemeral and embedded graph database

Environment

@bauplan.python(
||3.11|| ,

pip={"polars": "0.8.8"}

Dependency
graph

Packaﬂe 1.O

Polars 0.8

planner

Packaﬂe 2.

- Packaae 2.0

pauplan
cloud

Environment

@bauplan.python(
||3.11|| ,

pip={"polars": "0.8.8"}

planner

/

Polars 0.8
Dependency |
g ra ph Packaﬂe 1.O Packaﬂe 2] | Packaae 2.0
worker
\
|nsta” to .. ‘ Polars 0.8 ‘
@ Package 1.0 Package 2] | Packaae 2.0

%

J

pauplan
cloud

customer
cloud

Environment

@bauplan.python(
||3.11|| ’

pip={"polars": "0.8.8"}

Polars 0.8 = ‘

planner

/

Dependency
g ra ph Packaﬂe 1.O Packaﬂe 2| Packaae 2.0
worker
\
|nsta” to .. ‘ Polars 0.8 = ‘
@ Package 1.0 Package 2| [Packaﬁe 2.0

/

user code

&
mounted packages

v

pauplan
cloud

customer
cloud

Environment: assemble, don’t buila

Table 2: Time to add Prophet to a serverless DAG

| NO Docker, NO bandwidth -
pottlenecks, NO ECR update Task Seconds

AWS Lambda*
Update ECR container and function 130 (80 + 50)

| Functions are ephemeral: no
Ifecycle management.

Snowpark
| Addlng d package Is 15 x Update Snowpark container 35
faster than AWS Lambda bauplan

Update runtime 5/ 0 (cache)

CDMS@VLDB2025 The Deconstructed Warehouse: an Ephemeral Query Engine Design for Apache Iceberg

Data movement: Arrow everywhere + zero-copy

data=bauplan.Model(
"transactions",
columns=["1d", "usd", "country"],

ARRO w>>>

filter="..."

| Acrossworkers, an Arrow
stream s as fast aslocal
parquet files (B)

Node 1: Intermediate Data: Node 2:
‘ Within a worke g tables can Parent Address Space In-Memory FS Child Address Space

obe zero-copy shared A |l @ >N
between functions (C)

serialize

Figure 1: Communication: Degrees of Zero Copy

Data movement: Arrow everywhere + zero-copy

Table 3: Reading a dataframe from a parent (c5.9xlarge), avg.
(SD) over 5 trials

10M rows (6 GB) | 50M rows (30 GB)

Parquet file in S3 1.26 (0.14) 6.14 (0.98)
Parquet file on SSD 0.92 (0.09) 4.37 (0.15)
Arrow Flight 0.96 (0.01) 4.69 (0.01)

Arrow IPC 0.01 (0.00) 0.03 (0.01)

|EEE BIG DATA 2024: Faas and Furious: abstraction and differential caching for efficient data pre-processing

feasible?

| 13 May 2025

Zerrow: True Zero-Copy Arrow Pipelines in Bauplan

Yifan Dai*, Jacopo Tagliabue*, Andrea Arpaci-Dusseau®,
Remzi Arpaci-Dusseau®, Tyler R. Caraza-Harter™*

* University of Wisconsin—-Madison, ™ Bauplan Labs

Abstract. Bauplan is a FaaS-based lakehouse specifically
built for data pipelines: its execution engine uses Apache Ar-
row for data passing between the nodes in the DAG. While
Arrow is known as the “zero copy format”, in practice, lim-
ited Linux kernel support for shared memory makes it dif-
ficult to avoid copying entirely. In this work, we introduce
several new techniques to eliminate nearly all copying from
pipelines: in particular, we implement a new kernel mod-
ule that performs de-anonymization, thus eliminating a copy
to intermediate data. We conclude by sharing our prelimi-
nary evaluation on different workloads types, as well as dis-
cussing our plan for future improvements.

1 Introduction

Data pipelines are a popular programming paradigm for data

be mapped by multiple downstream nodes. Unfortunately,
simply using Arrow for inter-node communication does not
eliminate several sources of copying and duplication in data
pipelines. First, many tools and libraries that return Arrow
data allocate space with malloc, which uses anonymously
mapped memory without a backing file; operating systems
(including Linux) do not typically support sharing of anony-
mous memory, so unless all libraries in the Arrow ecosystem
are rewritten to use shared memory, a copy to shared memory
is necessary. Second, DAG nodes must perform copies when
Arrow output overlaps with Arrow input (e.g., the node adds
a column to an input table), as the existing Arrow IPC pro-
tocol does not provide a way to identify or reference such
overlap. Finally, when independent DAGs deserialize the
same data from on-disk formats (e.g., Parquet files) to Ar-

Scans do notrepeat themselves, but they oftenrhyme

Logical representation

c1 c2 3 c1 c3 c2
Differential cache: vait | vai2 | vaia it |vms | ™
| U1:“SELECTc]1,c2,c3FROMt WHERE il R
eventlime BETWEEN 2023-01-01AND Differential scan
20235-02-01" c1 €2 3 c1 c3 C2
© vall val2 | val3 vall2 | val32

| U2: “SELECTcl1,c3..BETWEEN
2023-01-0TAND 2023-05-01"

Physical representation

| UT:“SELECTc2..BETWEEN 2023-01-0T1

C1 C2 C3 C1 C3 C2
AND 2023-01-02"
vall val2 val3 val1 val3 val2
vali12 val32

|EEE BIG DATA 2024: Faas and Furious: abstraction and differential caching for efficient data pre-processing

https://arxiv.org/pdf/2411.08203

RQ: howdo you

manage concurrent

functions?

19 May 2025

Eudoxia: a FaaS scheduling simulator for the composable
lakehouse

Tapan Srivastava’
tapansriv@uchicago.edu

Jacopo Tagliabue® Ciro Greco
jacopo.tagliabue@bauplanlabs.com

ciro.greco@bauplanlabs.com

University of Chicago Bauplan Labs Bauplan Labs
Chicago, Illinois, USA New York, USA New York, USA
ABSTRACT data lake and warehouse, such as cheap and durable foundation

Due to the variety of its target use cases and the large API surface
area to cover, a data lakehouse (DLH) is a natural candidate for
a composable data system. Bauplan is a composable DLH built
on “spare data parts” and a unified Function-as-a-Service (FaaS)
runtime for SQL queries and Python pipelines. While Faa$S simplifies
both building and using the system, it introduces novel challenges
in scheduling and optimization of data workloads. In this work,
starting from the programming model of the composable DLH,
we characterize the underlying scheduling problem and motivate
simulations as an effective tools to iterate on the DLH. We then

through object storage, compute decoupling, multi-language sup-
port, unified table semantics, and governance [19].

The breadth of DLH use cases makes it a natural target for the
philosophy of composable data systems [23]. In this spirit, Bauplan
is a DLH built from “spare parts” [31]: while presenting to users a
unified API for assets and compute [30], the system is built from
modularized components that reuse existing data tools through
novel interfaces: e.g. Arrow fragments for differential caching [29],
Kuzu for DAG planning [18], DuckDB as SQL engine [24], Arrow
Flight for client-server communication [6].

 p) RN | SRR o)L Y. ST IRIRNOORRRRY o, [, LIS, W |ANUUPUYVITIRNRRRN - | (LAUTOOTR, | SRR | o L, |

The Composable Lakehouse

composable

=) Low-level view of abauplan run

A single run spans
hunadredads of traces,
across dozens of
services, ranging from
hyper-scaler PaasS to
obscure open-source
ioraries.

< Query in all datasets Reload Trace

View events

~ Trace summary(®)

e
(&
NN b NS TP b 9P S T IS 35 TS 3 TS TP G <5 T I (DRSS d S I G T S I
E—
—
Highlight errors X

Search spans Spans with errors 0 == Fields
name v ServiceName -~ @ O0s 5s 10s 15s 19.4s

bpin_proto.commander.service.v2.V2Comman...

136) checkAPIKey I 14.72ms
—e db.Query | 2.705ms
—e db.Query] 2.411ms
—e db.Exec | 4.586ms
—e« db.Query | 2.437ms
—e db.Query | 2.225ms
= 'g@t | 1.005ms
—e S3.HeadObject @ -+ | 10.82ms GET /v0/refs/{.. 17.7ps
HTTP POST B (1] GET 130.2ms
< 6 | POST /api/v2/code-snapshot/run 1.2 10 | GET /vO/refs/{ref... 47.05ms
POST /api/v2/code-snapshot/run ... 17.1ps GET 0.5772ms
8 | GET /vO/refs/{ref} 23.24ms GEX 10.21ms
GET 0.6037ms 2 e
GET 28.14
1) GET 11.40ms ms
. SET 0.4551ms
Ei:] /api/v1/api-keys/check | 8.533ms
GET 0.4215ms
—e get | 0.9426ms
GET /vO/refs/{... 28.9us
—e db.Query | 2.592ms
GET /vO0/refs/{... 16.9us
—e db.Query | 2.313ms
GET /v0/refs/{... 11.4us
(1] GET @& - 129.4ms
8 | GET /vO/refs/{ref.. 50.92ms
GET 1.724ms
GET /vO/refs/{... 19.3us
GET 37.06ms
GET 1.178ms

=) The composable lakehouse

Bauplanis built around some core
competencies plus “spare parts™:

| FaaSruntime and abstractions are new

| Ourquery engineis a fork of DuckDb

Building a serverless Data Lakehouse from spare parts*

Jacopo Tagliabuel’z’*, Ciro Greco! and Luca BigonI’Jr

| Ourcatalogis afork of Nessie

'Bauplan, New York City, United States
?Tandon School of Engineering, NYU, New York City, United States

" "
Abstract
u r p a n n € E r I S u I O n u Z u The recently proposed Data Lakehouse architecture is built on open file formats, performance, and first-class support for data

transformation, BI and data science: while the vision stresses the importance of lowering the barrier for data work, existing
implementations often struggle to live up to user expectations. At Bauplan, we decided to build a new serverless platform to
fulfill the Lakehouse vision. Since building from scratch is a challenge unfit for a startup, we started by re-using (sometimes
unconventionally) existing projects, and then investing in improving the areas that would give us the highest marginal gains
for the developer experience. In this work, we review user experience, high-level architecture and tooling decisions, and

| Ourlcebergclientis afork of Pylceberg

Keywords

s.DB] 10 Aug 2023

e’
o’

data lakehouse, data pipelines, serverless, reasonable scale, containerized execution
1. Introduction There are two primary approaches to realize the DLH
vision. The first is improving the usability and flexibility
[2] argues that the popular data warehouse architecture of existing Big Data technologies: e.g., one could start
will soon be replaced by a new architectural pattern, by adding automated cluster configurations to Apache

the Data Lakehouse (DLH). A DLH is built on open file
formats (e.g. Parquet), exceptional performance, and
first-class support for engineering (data transformation),
analytics (BI) and inferential (data science) use cases. The
vision of such architecture is first and foremost about
flexibility, making it possible for organizations to choose
different ways to operationalize data depending on data
volumes, use cases, and technological and security con-
straints.

Spark. Although everyone will stand behind easier devel-
opment in Spark, this approach falls short of delivering
a developer experience truly aligned with the vision of
the DLH, as we will discuss further below.

A different approach would consist in building a sys-
tem from scratch based on foundational principles, while
maintaining storage as a separate component; e.g., one
could imagine dispensing with the Java Virtual Machine
(TVM) altocether under the assumntion that the advan-

The composable lakehouse

We help develop libraries we use, improve
them and often contribute back:

Pylceberg
Duckdb

| Nessie
| Datafusion

| Kuzu faster’

@ B &

| Iceberg-rust

How much “Git” isin Git-for-data?

Git for Data: Formal Semantics of Branching,
Merging, and Rollbacks (Part 1)

How formal methods help ensure safe, reproducible workflows Iin data
feature_2_branch akehouses

CREATEB

CREATET

<> feature_branch)—‘
L~ |

s e) *—=9

=) How much “database” isin Git-for-data?

>bauplan run

/ u tmp_branch > — l‘— m l‘\
.

4

feature_branch

S ey

"We have discovered a truly marvelous proof of this, which this slide is too
narrow to contain”

c T TTIMM TN Ay W -V MATME AN T TYNTT ewrrriing TENET T T M CR AL TN PENTE E oW o

$modelinputs: 1 Run $modellnputs: 1 Run
- - - $modelOutputs: 1 ($successfulReadRun_r) $modelOutputs: 1 ($activeRuns, $successfulReadRun_r)
$next: 1 $next: 1
| wel ormal moaeis to verli ala s
iprev: ; pipelike :prev: ; i \’:e"ts‘e{branch
prev: prev: 0%
- - - $runModels: 1 P $runModels: 1 \\ \\\s
columns: 2 | | branch: 1 Eesasaan
' St e 1
consistency in the face of failure, and run T o [pweine She | foramao
, function: 1 —— commit: 1 ($first) [7 .\,__}
input: 1 : . function: 1 \
n n n mode: 1 modely[0] :comm't input:. 1 srunModels [0] \\commlt
models: 1 i mode: 1 next \
- output: 1 i i models: 1 Sprev
pipeline: 1 Modal Read : gfd /Commit0 : nextStep: 1 i i
rows: 1 ($first) I ($consistentStates) | output: 1 Model Do : gfd/Commit0 !
tables: 1 tisemae eoZaaud pipeline: 1 P :(SconsistentStates)]
values: 1 { rows: 1 b _____.!
mode |tables [gfd/Ta status: 1 \
Shext Il tables: 1 mode \ tables [gfd,
5 \
Sprev Y values: 1 \
Fisteton Append Populate Dro gfd /Snapshot0 S
: ($first) ($last) P ($existingSnapshots) Panction Append Populate gfd/Snapsh
$nfodellnputs ($first) ($last) $n¢xt ($existingSnap
i puns columns $modelQutputs . \
$hext $neky/ Sprev outpu -
Sprev put next Sne
Sprev
ofd [Table e Create ofd /Colur Replace |
gfd/Table ($last) Create |

9
e

composable programmable

=) The programmable lakehouse

1
2
3
4
e
6
/
3
9
10)
1
2
3
4
e
6
/
3
9

model="?model’

3 “"model”: model %,

import bauplan 1 1mport bauplan
)
@bauplan.model () 3 client = bauplan.Client()
@bauplan.python(=1 'polars': '0.8.0'%) 4
def augmented dataset(5 for 1, model 1n enumerate(models):
input_table="nyc taxi’, 6 model branch = client.create branch(
columns=[coll, 'col2"'] / =f"31¢ model",
filter="datetime ='2022-12-15", S ='ma1in’,
9

)

run_state = client.zrun(
=my_pipeline,
=agent _branch

I AN

AN
O CO ~1 Oy O & W N = O
—

1t model = ‘chatgpt’:

elif model = ‘claude’:

return predictions

00)

client.merge branch(
=my_best branch,
='main’

Inside composability! = outside composability

Data System .
composability nside

P\annin@

v

CaJraloa

FaasS

Duck DB

outside

API

composability

Create branch

Run

\

SQL checks

\

Merge branch

\

Check Iogs

The “APlLadder” philosophy

In order to get started, beginners

need an API to be S =R

5k vruns!

00 ruhns the
First clay!

|

>

GenAl
Pipe\ines N

Prod

1O
weeks

20

The “APlLadder” philosophy

| Inorderto take the next step,

novices need the APl to be [B|E16[0E] .

In order to get started, beginners

need an API to be [\ =it

5k vruns!

GenAl
Pipe\ir\es N

Prod

00 ruhs the \
First clay!

L~

weeks

20

The “APlLadder” philosophy

| Inorderto solve most problems,

experts need the APl to be flexible. 5k rung!
|
| Inorderto take the next step, . C‘;?nA .
| Plpehnes IN
novices need the APl to be [e|z[e (]|, Prool

In order to get started, beginners

need an API to be S =R

\

00 ruhs the \
First day!

L~

1O
weeks

20

- -
e

composable programmable

agentic

The agentic lakehouse

“Make somethingidiot-proof, and
someone will come up with a better
idiot”

Agents need easy-to-reason about APls
(check!), declarative infrastructure
(check!) and the possibility of making
mistakes without destroying downstream
systems (check!).

Bauplan APls are the lakehouse: any
model canrunthe full datalife-cycle just
with prompting!

Safe, Untrusted, “Proof-Carrying” Al Agents:
towards the agentic lakehouse

Jacopo Tagliabue Federico Bianchi Ciro Greco
Bauplan Labs TogetherAl Bauplan Labs
NYC, USA San Francisco, USA NYC, USA
jacopo.tagliabue @bauplanlabs.com federico@together.ai ciro.greco @bauplanlabs.com

Abstract—Data lakehouses manage sensitive workloads where
Al automation raises risks for trust, correctness, and governance.
We argue that API-first, programmable lakehouses provide the
right abstractions for safe-by-design agentic workflows. Using
Bauplan as a case study, we show how data branching and
declarative environments naturally extend to agents, enabling
reproducibility and observability while reducing the attack sur-
face. We present a proof-of-concept for repairing broken data
pipelines, combining Bauplan, TogetherAl, and agentic loops with
correctness checks inspired by proof-carrying code. Preliminary
results demonstrate both the feasibility and challenges of un-
trusted Al agents operating safely on production data, outlining
a path towards the agentic lakehouse.

Index Terms—AlI agents, lakehouse, data pipelines, versioning

I. INTRODUCTION

The data lakehouse is the de facto cloud architecture for
analytics and Artificial Intelligence (AI) workloads [2], [3],

thanke to ctorace-comnnte deconnline munltic-lanonaoce ennnnort

pipelines is a canary test for agent penetration in high-stake
non-trivial scenarios, which are often hard for expert humans
[10], [11]. We summarize our contributions as follows:

1) we model the data pipeline life-cycle in a next-gen
programmable lakehouse, Bauplan [12]: our key per-
spective is that traditional lakehouses resist automation
because APIs are an afterthought, with no attempt to
serve heterogeneous use cases with a unified interface;

2) we review common objections to automation of high-
stake workloads, in the light of the proposed abstractions
for repairing data pipelines: in particular, we argue that
our model promotes trustworthiness and correctness both
in data and code artifacts;

3) we release working code!, showing a proof of con-
cept for self-repairing pipelines using Bauplan,
TogetherATI and an agentic loop. We share tentative
results from the prototype, provide preliminary analyses

We barely scratched the surface!

Want to know more?

20235
o CDMS@VLDB 2023
2024

o SIGMOD 2024
o MIDDLEWARE 2024 (with UMadison-Wisconsin)
e BIG DATA 2024

2025

o UNDERREVIEW 2025 (with UMadison-Wisconsin)
e CODMS@VLDB 2025 (withUChicago)

https://arxiv.org/pdf/2308.05368
https://arxiv.org/pdf/2404.13682
https://arxiv.org/pdf/2410.17465
https://arxiv.org/abs/2411.08203
https://arxiv.org/abs/2504.06151
https://arxiv.org/abs/2505.13750

| (Most) lakehouse use cases canbe served by a
FaaS model
| Composability allows us to explore the design

space quickly and cheaply

‘ltisnotworth anintelligent
man's time to be in the majority.
By definition, there are already
enough peopletodothat.”

G.H. Hardy

| jacopo.tagliabue@bauplanlabs.com

| We are hiring!

