
Speedrunning the Lakehouse
A composable FaaS over object storage

CDMS@VLDB
09.05.25

Ciao, I’m Jacopo!
| Co-founder and CTO at Bauplan.

Backed by IE, SPC, Wes McKinney, Spencer Kimball, Chris Re et al..

| Started the “Reasonable Scale” movement.
Co-founder at Tooso and lead AI at TSX:CVO after the acquisition.

| 10 years up and down the stack in R&D, product, open source
ICML, KDD, VLDB, NAACL, SIGIR, WWW et al.., >2k stars, >50M+ downloads.

https://www.kmworld.com/Articles/News/News/Coveo-acquires-Tooso-combining-AI-with-ecommerce-132919.aspx

It takes a (distributed) village
| Matt, Ciro, Luca, Nate, Vlad (and others, unfortunately without a chibi) share with

me the credit for whatever value these ideas may have.

It takes a (distributed) village
| Matt, Ciro, Luca, Nate, Vlad (and others, unfortunately without a chibi) share with

me the credit for whatever value these ideas may have.
| Obviously, all the remaining mistakes are theirs 😁

"bauplan is [a system] fully built using
composable principles (...). It is
refreshing to learn about a real-life
system built using such architectural
principles."

Reviewer #2

| Dremio

| Snowflake

| Databricks

| Fabric

Speedrunning a Lakehouse? Really?

2B USD
66B
100B
???B

| Bauplan

| Dremio

| Snowflake

| Databricks

| Fabric

Speedrunning a Lakehouse? Really?

1. Simplicity
2. Composability

4:17:01 (!?!)

Mo (mental) models, mo problems

“Simplex Sigillum Veri”

ID USD COUNTRY

13 44 US

144 13 IT

146 1 IT

ID USD COUNTRY

144 13 IT

146 1 IT

COUNTRY USD

IT 14

transactions euro_selection usd_by_country

def euro_selection(
 df=transactions
):
 _df =
transform_input(df)
 return _df

def usd_by_country(
 df=euro_selection
):
 _df =
transform_input(df)
 return _df

f(df) = _df

A sample pipeline

High-level view of a bauplan run

CLI / SDK Control Plane Data Plane

High-level view of a bauplan run

CLI / SDK Control Plane Data Plane

→→ →→

Pipelines are chained functions (Batch / Dev)

def euro_selection(
 df=euro_selection
):
 _df = transform_input(df)
 return _df

def usd_by_country(
 df=euro_selection
):
 _df = transform_input(df)
 return _df

user f1

user f2

S3 read f

S3 write f

functionsfunctions

functionsfunctions

Queries are chained functions as well!

WITH taxi_january AS (

SELECT pickup_datetime,

tip_amount FROM taxi_iceberg

WHERE pickup_datetime

BETWEEN ‘2025-01-01’ AND

‘2025-31-01’

)

SELECT sum(tip_amount) FROM

taxi_january;

user
query

S3 read f

SQL f

Flight server

| Easy to reason about
‒ Simple abstractions, “looks like

code”
‒ A unified compute model,

“everything is a function”

Everything is a function, or “OnlyFaas”

VLDB 2023: Building a serverless Data Lakehouse from spare parts

| Can we re-use existing FaaS? NO!!!

‒ Resource limitations

‒ No “DAG awareness”

‒ Slow feedback loop

PROs: one mental model to rule them all

Middleware 2024: Bauplan: zero-copy, scale-up FaaS for data pipelines

https://arxiv.org/abs/2410.17465

| New programming model
‒ Express data and code dependencies

| New runtime
‒ Function lifecycle

‒ Scheduling

CONs: we need a new a FaaS-for-data

Middleware 2024: Bauplan: zero-copy, scale-up FaaS for data pipelines

https://arxiv.org/abs/2410.17465

New programming model

clear “division of labor”
between platform and users

New programming model

@bauplan.model()
@bauplan.python(
 "3.11",
 pip={"polars": "1.33.0"}
)
def euro_selection(
 data=bauplan.Model(
 "transactions",
 columns=["id", "usd", "country"],
 filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"
)
):
 # filtering here
 # return a dataframe
 return _df

bau.py
@bauplan.model(materialize=True)

@bauplan.python(

 "3.10",

 pip={"polars": "0.8.8"}
)

def usd_by_country(

 data=bauplan.Model("euro_selection")

):

 # aggregation here

 # return a dataframe

 return _df

bau.py

@bauplan.model()
@bauplan.python(
 "3.11",
 pip={"polars": "1.33.0"}
)
def euro_selection(
 data=bauplan.Model(
 "transactions",
 columns=["id", "usd", "country"],
 filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"
)
):
 # filtering here
 # return a dataframe
 return _df

bau.py
@bauplan.model(materialize=True)

@bauplan.python(

 "3.10",

 pip={"polars": "0.8.8"}
)

def usd_by_country(

 data=bauplan.Model("euro_selection")

):

 # aggregation here

 # return a dataframe

 return _df

bau.py

User code here!

New programming model

@bauplan.model()
@bauplan.python(
 "3.11",
 pip={"polars": "1.33.0"}
)
def euro_selection(
 data=bauplan.Model(
 "transactions",
 columns=["id", "usd", "country"],
 filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"
)
):
 # filtering here
 # return a dataframe
 return _df

bau.py
@bauplan.model(materialize=True)

@bauplan.python(

 "3.10",

 pip={"polars": "0.8.8"}
)

def usd_by_country(

 data=bauplan.Model("euro_selection")

):

 # aggregation here

 # return a dataframe

 return _df

bau.py

Signature Table(s)->Table

New programming model

New programming model

@bauplan.model()
@bauplan.python(
 "3.11",
 pip={"polars": "1.33.0"}
)
def euro_selection(
 data=bauplan.Model(
 "transactions",
 columns=["id", "usd", "country"],
 filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"
)
):
 # filtering here
 # return a dataframe
 return _df

bau.py
@bauplan.model(materialize=True)

@bauplan.python(

 "3.10",

 pip={"polars": "0.8.8"}
)

def usd_by_country(

 data=bauplan.Model("euro_selection")

):

 # aggregation here

 # return a dataframe

 return _df

bau.py

Infra-as–code

@bauplan.model()
@bauplan.python(
 "3.11",
 pip={"polars": "1.33.0"}
)
def euro_selection(
 data=bauplan.Model(
 "transactions",
 columns=["id", "usd", "country"],
 filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"
)
):
 # filtering here
 # return a dataframe
 return _df

bau.py
@bauplan.model(materialize=True)

@bauplan.python(

 "3.10",

 pip={"polars": "0.8.8"}
)

def usd_by_country(

 data=bauplan.Model("euro_selection")

):

 # aggregation here

 # return a dataframe

 return _df

bau.pybau.py

I/O chaining

New programming model

New runtime

we can’t just “run user functions”, which
is a challenge and opportunity

plan
+

environment
 +

data movement

bauplan run =

Planning

@bauplan.model()
@bauplan.python(
 "3.11",
 pip={"polars": "0.8.8"}
)
def euro_selection(
 data=bauplan.Model(
 "transactions",
 columns=["id", "usd", "country"],
 filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"
)
):
 # filtering here
 # return a dataframe
 return _df

bau.py
USER CODE PLATFORM CODE

RUN ...
…

obj.get(Range='bytes=32-64')['Body']
…

Planning

CDMS@VLDB2025: Dag lakehouse planning with an ephemeral and embedded graph database

Logical

Physical

Worker

Environment
bauplan
cloud

Dependency
graph

planner

Polars 0.8

Package 2.1 Package 2.0Package 1.0

@bauplan.python(
 "3.11",
 pip={"polars": "0.8.8"}
)

Environment
bauplan
cloud

Dependency
graph

planner

Polars 0.8

Package 2.1 Package 2.0Package 1.0

Install to …

worker

Polars 0.8

Package 2.1 Package 2.0Package 1.0

customer
cloud

@bauplan.python(
 "3.11",
 pip={"polars": "0.8.8"}
)

Environment
bauplan
cloud

Dependency
graph

planner

Polars 0.8

Package 2.1 Package 2.0Package 1.0

worker

Polars 0.8

Package 2.1 Package 2.0Package 1.0

customer
cloudInstall to …

mounted packages

user code

@bauplan.python(
 "3.11",
 pip={"polars": "0.8.8"}
)

| NO Docker, NO bandwidth
bottlenecks, NO ECR update

| Functions are ephemeral: no
lifecycle management.

| Adding a package is 15×
faster than AWS Lambda

Environment: assemble, don’t build

CDMS@VLDB2025 The Deconstructed Warehouse: an Ephemeral Query Engine Design for Apache Iceberg

| Across workers, an Arrow
stream is as fast as local
parquet files (B)

| Within a worker, tables can
be zero-copy shared
between functions (C)

Data movement: Arrow everywhere + zero-copy
data=bauplan.Model(
 "transactions",
 columns=["id", "usd", "country"],
 filter="..."
)

Data movement: Arrow everywhere + zero-copy

IEEE BIG DATA 2024: Faas and Furious: abstraction and differential caching for efficient data pre-processing

RQ: is D even
feasible?

Differential cache:

| U1: “SELECT c1, c2, c3 FROM t WHERE
eventTime BETWEEN 2023−01−01 AND
2023−02−01”

| U2: “SELECT c1, c3 … BETWEEN
2023−01−01 AND 2023−03−01”

| U1: “SELECT c2 … BETWEEN 2023−01−01
AND 2023−01−02”

Scans do not repeat themselves, but they often rhyme

IEEE BIG DATA 2024: Faas and Furious: abstraction and differential caching for efficient data pre-processing

https://arxiv.org/pdf/2411.08203

RQ: how do you
manage concurrent
functions?

The Composable Lakehouse

composable

Low-level view of a bauplan run

A single run spans
hundreds of traces,
across dozens of
services, ranging from
hyper-scaler PaaS to
obscure open-source
libraries.

Bauplan is built around some core
competencies plus “spare parts”:

| FaaS runtime and abstractions are new

| Our query engine is a fork of DuckDb

| Our catalog is a fork of Nessie

| Our DAG planner is built on Kuzu

| Our Iceberg client is a fork of PyIceberg

The composable lakehouse

We help develop libraries we use, improve
them and often contribute back:

| PyIceberg

| Duckdb

| Nessie

| Datafusion

| Kuzu

| Iceberg-rust

The composable lakehouse

25×
faster!

How much “Git” is in Git-for-data?

feature_2_branch

main

CREATE T

CREATE B

feature_branch

How much “database” is in Git-for-data?

main

feature_branch

tmp_branch>bauplan run

“We have discovered a truly marvelous proof of this, which this slide is too
narrow to contain”

Lightweight formal models to verify data
consistency in the face of failure, and run

automated checks as we add new primitives!

< >→
composable programmable

import bauplan

@bauplan.model()
@bauplan.python(pip={'polars': '0.8.0'})
def augmented_dataset(
 input_table=’nyc_taxi’,
 columns=[col1,'col2']
 filter="datetime ='2022-12-15",
 model=’?model’
):
 if model = ‘chatgpt’:
 # init the client here

 elif model = ‘claude’:
 # init the client here

…
 return predictions

import bauplan

client = bauplan.Client()
run models on branches
for i, model in enumerate(models):
model_branch = client.create_branch(
 branch=f"{i}_model",
 from_ref='main',
 params= { “model”: model },
)
run_state = client.run(
 dir=my_pipeline,
 branch=agent_branch
)

merge the best version
client.merge_branch(
 source_ref=my_best_branch,
 into_branch='main'
)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

The programmable lakehouse

Inside composability!= outside composability

DuckDB

Planning

Catalog

FaaS

SQL checks

Check logsMerge branch

Create branch

Run

Data System
composability

API
composabilityinside outside

| In order to get started, beginners
need an API to be convenient.

The “API Ladder” philosophy

100 runs the
first day!

GenAI
pipelines in

prod

5k runs!

weeks
1 10 20

| In order to get started, beginners
need an API to be convenient.

The “API Ladder” philosophy

100 runs the
first day!

GenAI
pipelines in

prod

5k runs!

weeks
1 10 20

| In order to take the next step,
novices need the API to be gradual.

| In order to get started, beginners
need an API to be convenient.

The “API Ladder” philosophy

100 runs the
first day!

GenAI
pipelines in

prod

5k runs!

weeks
1 10 20

| In order to take the next step,
novices need the API to be gradual.

| In order to solve most problems,
experts need the API to be flexible.

< >→ →
composable programmable agentic

| “Make something idiot-proof, and
someone will come up with a better
idiot”

| Agents need easy-to-reason about APIs
(check!), declarative infrastructure
(check!) and the possibility of making
mistakes without destroying downstream
systems (check!).

| Bauplan APIs are the lakehouse: any
model can run the full data life-cycle just
with prompting!

The agentic lakehouse

We barely scratched the surface!

Want to know more?

2023
● CDMS@VLDB 2023

2024
● SIGMOD 2024
● MIDDLEWARE 2024 (with UMadison-Wisconsin)
● BIG DATA 2024

2025
● UNDER REVIEW 2025 (with UMadison-Wisconsin)
● CDMS@VLDB 2025 (with UChicago)

https://arxiv.org/pdf/2308.05368
https://arxiv.org/pdf/2404.13682
https://arxiv.org/pdf/2410.17465
https://arxiv.org/abs/2411.08203
https://arxiv.org/abs/2504.06151
https://arxiv.org/abs/2505.13750

| (Most) lakehouse use cases can be served by a

FaaS model

| Composability allows us to explore the design

space quickly and cheaply

“It is not worth an intelligent
man's time to be in the majority.
By definition, there are already
enough people to do that.”

G.H. Hardy

| jacopo.tagliabue@bauplanlabs.com

| We are hiring!

