How Do We Sleep at Night?

Building Reliable Distributed Systems at Startup Speed

SRDS 44th International Symposium on Reliable Distributed Systems
01.10.25

Ciao, I’'mJacopo!

| Co-founderand CTO at Bauplan.
Backed by IE, SPC, Wes McKinney, Spencer Kimball Chris Re et al.

| Started the “Reasonable Scale” movement.
Co-founder at Tooso and lead Al at TSX:CVO after the acquisition.

| 10 yearsup and down the stackin R&D, product, open source
ICML, KDD, VLDB, NAACL, sigiR, WWW et al, >2k stars, >50M+ dowhloads.

https://www.kmworld.com/Articles/News/News/Coveo-acquires-Tooso-combining-AI-with-ecommerce-132919.aspx

It takes a (distributed) village

| Matt, Ciro, Luca, Nate, Vlad (and others, unfortunately without a chibi) share with
me the credit for whatevervalue these ideas may have.

It takes a (distributed) village

| Obviously, all the remaining mistakes are theirs -

Bauplanis the easiest way to build reliable,
fast cloud data pipelines.

No Infrastructure
— Just Python and SQL
— Like Git, but fordata

pip 1nstall bauplan

bauplan checkout my-branch
bauplan run

eeingis believing

bpin_pipeline

® models.py M X

® models.py [} parent > [e] trips

import bauplan

@bauplan.model()
@t)au.\‘-\'s mysbthan! ' 100)

(parameter) trips: Model
»

trips=bauplan.Model

: |

Ltaxi n vny ’
columns=| 'p]
filter="pickup

!

'
zones=baup Lan.Model
) 3
pickup_location_table = trips.join(zones, 'PUlLoca
pickup_location_table

@bauplan.model(materialization_strategy='REPLACE")
@bauplan.python('3.10', pip={'polars’': '1.15.0'})
child(data=bauplan.Modell('parent')):
import polars as pl
print(f"\n==={data.num_rows / 1_000 000}

OUTPUT TERMINAL

v TERMINAL

apo@Jacopos-MacBook-Pro bpln pipeline % bauplan checkout -b jacopo.vldbl

»¢ I° apo.unity* <> M O0A 0 # Live Share © Not Committed Yet @ Ln9,Col84 Spaces:4 UTF-8 LF {3 Python & 3.13.2 (bpin-pipeline)

https://docs.google.com/file/d/1TWhnfK8l06QO3TnGkmb4ehgCeAFpVgMr/preview

Everybody wants to
ship

Nearform
N

https://nearform.com » digital-community » vibe-codin...

Vibe coding is fun — until you have to ship at scale
14 May 2025 — Vibe coding is fun — until you have to ship at scaleVibe coding is f ... This concept,

born from the increasing proficiency of large language ...

.l First Round Review
https://review.firstround.com » podcast » from-product-...

How to ship software at scale — Snir Kodesh

From product roadmapping to sprint planning: How to ship software at scale — Snir Kodesh. Snir
Kodesh is the Head of Engineering at Retool and former Senior ...

HubSpot
E P

https://product.hubspot.com » blog » how-we-built-our-s...

How We Built Our Stack For Shipping at Scale

How We Built Our Stack For Shipping at Scale ... We've designed our team structure, development
processes, and technical architecture to promote strong team ...

@ Acceldata
https://www.acceldata.io > guide > data-pipelines-how-t...

Data Pipeline Optimization at Scale

The following provides an in-depth understanding of how to optimize data pipelines at scale with data

observability.

@' Medium - Marvich

2 months ago

How we solved Databricks Pipeline observabillity at scale ...

Here's how we tackled pipeline observability in Databricks at scale, and why it was far more challenging

(and expensive) than expected.

Building a Data Platform

| Dremio 2BUSD
| Snowflake 668
|
|

Databricks 100B

Fabric 7?77B

Building a Data Platform

Bauplan ‘

Dremio

Databrick |

|

|

| Snowflake
|

| Fabric

..but startups make you
ship "at speed”

BuHeing Speedrunning a Data Platform

Q speed-run
/'spéd ran/

verb

gerund or present participle: speedrunning

complete (a video game, or level of a game) as fast as possible.

'l used to be able to speedrun this game in less than 20 minutes’

Super Mario Bros. (1985])

Super Mario Series

STERIAINE NES SNES WiiVC +14

J¢ Category extensions @@ Discord

Leaderboards News 8 Guides 42 Resources 44

n‘ —

Any% Warpless Any% All-Stars Warpless All-Stars

| Version

NTSC man

2= Filters AR Show rules

Time

]
| Player Time

¥ ,_ 4Am 54s 565ms

; I = OO 4m 54s 565ms

o Z£=avergem O 4m 54s 748ms

4dm 54s 748ms

= Tree_05 ®) 4m 54s 864ms

4Am 54s 864 ms

Speedrunning > spee

d>com

posability

=) The Composable Data Platform

“bauplan is La 9y9+em] Pully built
using composable principles ().
It Is reqcreshir\a to learn about a

The Composable Data Management System Manifesto

Pedro Pedreira Orri Erling Konstantinos Scott Schneider

Meta Platforms Inc. Meta Platforms Inc. Karanasos Meta Platforms Inc.
pedroerp@meta.com oerling@meta.com Meta Platforms Inc. scottas@meta.com

kkaranasos@meta.com
Wes McKinney Satya R Valluri Mohamed Zait Jacques Nadeau
Voltron Data Databricks Inc. Databricks Inc. Sundeck
wes@voltrondata.com satya.valluri@databricks.com mohamed.zait@databricks.com jacques@sundeck.io
ABSTRACT the first databases were developed, our software development prac-

The requirement for specialization in data management systems
has evolved faster than our software development practices. Af-
ter decades of organic growth, this situation has created a siloed
landscape composed of hundreds of products developed and main-
tained as monoliths, with limited reuse between systems. This frag-
mentation has resulted in developers often reinventing the wheel,
increased maintenance costs, and slowed down innovation. It has
also affected the end users, who are often required to learn the
idiosyncrasies of dozens of incompatible SQL and non-SQL API
dialects, and settle for systems with incomplete functionality and
inconsistent semantics. In this vision paper, considering the recent
popularity of open source projects aimed at standardizing differ-
ent aspects of the data stack, we advocate for a paradigm shift in
how data management systems are designed. We believe that by
decomposing these into a modular stack of reusable components,
development can be streamlined while creating a more consistent
experience for users. Towards that goal, we describe the state-of-
the-art, principal open source technologies, and highlight open
questions and areas where additional research is needed. We hope
this work will foster collaboration, motivate further research, and
promote a more composable future for data management.

tices have not; data management systems continue to be, by and
large, developed and distributed as vertically integrated monoliths.

While modern specialized data systems may seem distinct at first,
at the core, they are all composed of a similar set of logical compo-
nents: (a) a language frontend, responsible for interpreting user
input into an internal format; (b) an intermediate representation
(IR), usually in the form of a logical and/or physical query plan;
(c) a query optimizer, responsible for transforming the IR into
a more efficient IR ready for execution; (d) an execution engine,
able to locally execute query fragments (also sometimes referred
to as the eval engine); and (e) an execution runtime, responsible
for providing the (often distributed) environment in which query
fragments can be executed. Beyond having the same logical compo-
nents, the data structures and algorithms used to implement these
layers are also largely consistent across systems. For example, there
is nothing fundamentally different between the SQL frontend of
an operational database system and that of a data warehouse; or
between the expression evaluation engines of a traditional colum-
nar DBMS and that of a stream processing engine; or between the
string, date, array, or json manipulation functions across database
systems.

However, this fragmentation and consequent lack of reuse across
systems has slowed us down. It has forced developers to reinvent

real-life system buit usin g such

Building a serverless Data Lakehouse from spare parts*

architectural Pr‘inciples"

Jacopo Tagliabue®**, Ciro Greco® and Luca Bigon”

IBauplan, New York City, United States
?Tandon School of Engineering, NYU, New York City, United States

Abstract

The recently proposed Data Lakehouse architecture is built on open file formats, performance, and first-class support for data
transformation, BI and data science: while the vision stresses the importance of lowering the barrier for data work, existing
implementations often struggle to live up to user expectations. At Bauplan, we decided to build a new serverless platform to
fulfill the Lakehouse vision. Since building from scratch is a challenge unfit for a startup, we started by re-using (sometimes
unconventionally) existing projects, and then investing in improving the areas that would give us the highest marginal gains
for the developer experience. In this work, we review user experience, high-level architecture and tooling decisions, and
conclude by sharing plans for future development.

Reviewer 2

Keywords

data lakehouse, data pipelines, serverless, reasonable scale, containerized execution

1. Introduction There are two primary approaches to realize the DLH

vision. The first is improving the usability and flexibility
[2] argues that the popular data warehouse architecture of existing Big Data technologies: e.g., one could start

will soon be replaced by a new athiteFtural pattern, by adding automated cluster configurations to Apache
the Data Lakehouse (DLH). A DLH is built on open file Spark. Althouch evervone will stand behind easier devel-

@) Inside a bauplan run

A single run spans
hundreds of traces,
across dozens of
services, ranging from
hyper-scaler PaasS to
obscure open-source
ioraries.

, In all datasets Reload Tra

4 I‘Clce | View events

~ Trace summary(®

Highlight errors X

Search spans Spans with errors 0 == Fields
name Service Name @ Os 5s 10s 15s 19.4s
bpln_proto.commander.service.v2.V2Comman... 1.424s
{136) checkAPIKey - 14.72ms
—e db.Query | 2.705ms
—e db.Query | 2.411ms
—e db.Exec | 4.586ms
—e db.Query | 2.437ms
—e db.Query | 2.225ms
= set | 1.005ms
—e S3.HeadObject @ - | 10.82ms GET /vO/refs/{.. 17.7us
HTTP POST - 12 1] GET 130.2ms
4 6 | POST /api/v2/code-snapshot/run 1.7 10| GET /vO/refs/{ref... 47.05ms
POST /api/v2/code-snapshot/run ... 17.1ps GET 0.5772ms
8 | GET /vO/refs/{ref} 23.24ms ek 10:35me
GET 0.6037ms e il
GET 28.14ms
1 GET 11.40ms
_ _ SET 0.4551ms
[_T_] /api/v1/api-keys/check | 8.533ms
GET 0.4215ms
—e get | 0.9426ms
GET /vO/refs/{... 28.9us
—e db.Query | 2.592ms
GET /vO/refs/{... 16.9us
—e db.Query | 2.313ms
GET /vO/refs/{... 11.4us
1] GET @& - 129.4ms
8 | GET /vO/refs/{ref.. 50.92ms
GET 1.724ms
GET /vO/refs/{... 19.3us
GET 37.06ms

— GET 1.178ms

|

O
@ L La

Speedrunning > speed > composabillity >

g

Move fast AND do not break things

Bauplan “at scale”

il ~150k

The interest rate on composability

CONTROL PLANE DATA PLANE

-

e <@

—

_

|
l
|
QD

COMMANDER

.

|

PLANNER

o |

.

RESOLVER

N

worker I 1

worker |)

_ J

@) The interest rate on composability

Composability is NOT a get-out-of-jail
card:

You need towork with the
community and learntheropes
(technically, culturally).

You need to adapt, improve,
Mmaintain components.

You contribute back whenever
possible.

25x
faster’

The Deconstructed Warehouse: An Ephemeral Query Engine
Design for Apache Iceberg

Ryan Curtin
Independent Researcher
ryan@ratml.org

ABSTRACT

The rise of open formats (e.g. Apache Iceberg, Delta Lake) and
single-node vectorized engines (e.g. DuckDB, DataFusion) have
been important recent trends in data systems. Perhaps surprisingly,
these trends did not interact to produce a credible, cloud-first OLAP
experience yet: while open formats are a staple of large scale lake-
houses [5], and proprietary offerings emerged over the DuckDB
format [1], managed Iceberg-native experience are still lacking.
In the spirit of the ‘Composable Data Manifesto” [2], we show
how to achieve warehouse-like capabilities (with very modest re-

sources) through ephemeral functions and disaggregated components—

storage, data catalog, planning, caching, execution. We summarize
our contributions as follows:

(1) we present a novel design for integrating data catalogs,
open formats and single-node engines into a “deconstructed
warehouse”;

(2) we motivate and detail a new command we implemented in
our DuckDB fork, EXPLAIN SCANS, which sits in between
the logical and the physical plan as an intermediate opti-
mization;

(3) we present preliminary results when benchmarking our I/O
approach against sensible alternatives.

Jacopo Tagliabue
Bauplan Labs
jacopo.tagliabue@bauplanlabs.com
Customer cloud
|— ---------------------- l
rssramimen-— O -0

l»)
0
()
O
o
)
[}
Q
A

Planner

Figure 1: A FaaS-based architecture with storage-compute
decoupling, ephemeral serverless compute and modular plan-
ning.

\ :

I

9- » SQL — Parse :

] :

S3 Scan :

I

Arrow Arrow |

I

Execute SQL Flight Server +--'
Arrow f

Figure 2: Query execution as a sequence of functions exchang-

.
ino Arraw ctreamec

DAG lakehouse planning with an ephemeral and embedded
graph database

Luca Bigon Jacopo Tagliabue Semih Salihoglu
Bauplan Labs Bauplan Labs Kuzu Inc.
luca.bigon@bauplanlabs.com jacopo.tagliabue@bauplanlabs.com semih@kuzudb.com
@bauplan.model() logical plan F raw_data] m_m} l(final_data 1
@bauplan.python("3.10", pip={"pandas": "2.0"}) 2 = ‘ =
def cleaned_data(R e e B URD c e OTa
reference to its parent DAG node ontimized an (—
data=bauplan.Model(val(ids:ed:igm:zu) E 0 \—Jm 0 [E’
"raw_data", i 1 1
columns=["c1", "c2", "c3"], u G & ﬂ 0 u

filter="eventTime BETWEEN 2023-01-01 AND 2023-02-01"
)
)
the body returns a dataframe after transformations
return data.do_something()

@bauplan.model()
@bauplan.python("3.11", pip={"pandas": "1.5"})
def final_datal(

data=bauplan.Model("cleaned_data")
):
return data.do_something()

Figure 1: A two nodes DAG in Bauplan.

ABSTRACT
Bauplan is a code-first lakehouse built by vertically integrating

through APIs modular data components — catalog, I/O, runtime,

Flight server etc. [5]. To abstract the underlying complexity away
from users, Bauplan provides a declarative functional framework

Figure 2: The logical plan is created by parsing user code, the
physical plan is obtained running Cypher on Kuzu.

inference through recursive queries; (ii) optimized query execution
with leveraging multi-core hardware.

Given the on-demand nature of our workloads, we wish to move
the embedded GDBMS in memory, further simplifying our infras-
tructure life-cycle and speeding up queries. In collaboration with
the Kuzu team, we developed an in-memory version of their data-
base, so that we could leverage a new, ephemeral graph at every
run: as a result, we currently create tens of thousands of ephemeral
graph databases on-the-fly per day (and growing). The in-memory
version provided optimized inference without infrastructure deper

The dependency plane
Internal modules: control plane,
O custom FaaS runtime

O Forked OS: Nessie, DuckDb

O Stock OS (stable): Pylceberg
Cloud services:
Stock OS (fringe): Kuzu S3, Fargate, EC2, RDS

How battle tested this is?

Cah i un-Hbtk things myeeH:?

The testing line

O Formal proof

Simulations

o End-to-Endtests

- Unit tests
- Smallintegration tests

R L =

Unit Tests
Internal modules: control plane,
custom FaaS runtime

O Forked OS: Nessie, DuckDb

O Stock OS (stable): Pylceberg
Cloud services:
Stock OS (fringe): Kuzu S3, Fargate, EC2, RDS

How battle tested this is?

Cah i un-Hbtk things myeelP?

End-to-end tests
Internal modules: control plane,
O custom FaaS runtime

O O Forked OS: Nessie, DuckDb

O Stock OS (stable): Pylceberg
Cloud services:
Stock OS (fringe): Kuzu S3, Fargate, EC2, RDS

How battle tested this is?

Cah i un-Hbtk things myeelP?

Internal modules: control plane,
custom FaaS runtime

@
O
@

Forked OS: Nessie, DuckDb

71 [cs.DB] 19 May 2025

Stock OS (fringe): Kuzu

Cah i un-Hbtk things myeelﬁ?

How battle tested this is?

Eudoxia: a FaaS scheduling simulator for the composable

lakehouse
Tapan Srivastava® Jacopo Tagliabue® Ciro Greco
tapansriv@uchicago.edu jacopo.tagliabue@bauplanlabs.com ciro.greco@bauplanlabs.com
University of Chicago Bauplan Labs Bauplan Labs
Chicago, Illinois, USA New York, USA New York, USA
ABSTRACT data lake and warehouse, such as cheap and durable foundation

Due to the variety of its target use cases and the large API surface
area to cover, a data lakehouse (DLH) is a natural candidate for
a composable data system. Bauplan is a composable DLH built
on “spare data parts” and a unified Function-as-a-Service (FaaS)
runtime for SQL queries and Python pipelines. While FaaS simplifies
both building and using the system, it introduces novel challenges
in scheduling and optimization of data workloads. In this work,
starting from the programming model of the composable DLH,
we characterize the underlying scheduling problem and motivate
simulations as an effective tools to iterate on the DLH. We then
introduce and release to the community Eubnoxia , a deterministic
simulator for scheduling data workloads as cloud functions. We
show that EuDOXIA can simulate a wide range of workloads and
enables highly customizable user implementations of scheduling
algorithms, providing a cheap mechanism for developers to evaluate
different scheduling algorithms against their infrastructure.

VLDB Workshop Reference Format:

Tapan Srivastava, Jacopo Tagliabue, and Ciro Greco. Eudoxia: a FaaS
scheduling simulator for the composable lakehouse. VLDB 2024 Workshop:
Relational Models.

through object storage, compute decoupling, multi-language sup-
port, unified table semantics, and governance [19].

The breadth of DLH use cases makes it a natural target for the
philosophy of composable data systems [23]. In this spirit, Bauplan
is a DLH built from “spare parts” [31]: while presenting to users a
unified API for assets and compute [30], the system is built from
modularized components that reuse existing data tools through
novel interfaces: e.g. Arrow fragments for differential caching [29],
Kuzu for DAG planning [18], DuckDB as SQL engine [24], Arrow
Flight for client-server communication [6].

Bauplan serves interactive and batch use cases through a unified
Function-as-a-Service (FaaS) runtime running on standard VMs
[28]. The complexity of resource management in a dynamic, multi-
language DLH thus reduces to “just” scheduling functions. Building
and testing distributed systems is complex, costly, and error-prone
in monolithic systems [10, 17, 37] and is even more so in composable
data systems. In order to test our intuitions and safely benchmark
policies, we decided to build and release a DLH simulator.

In this work, we present EupOX14, a scheduling simulator de-
signed for the composable DLH. Our contributions are threefold:

(1) We describe a composable lakehouse architecture from a

nracrarmmming and avaciitian madal marenantixra ohaxeris-

Stock OS (stable): Pylceberg

Cloud services:
S35, Fargate, EC2, RDS

Formal proofs

Internal modules: control plane,
custom FaaS runtime

O

Forked OS: Nessie, DuckDb

O Stock OS (stable): Pylceberg

Cloud services:
Stock OS (fringe): Kuzu S3, Fargate, EC2, RDS

How battle tested this is?

~o @00
Q00

|

@
v @ Ve 4

Speedrunning > speed > composability > fragity

24

A tale of two systems: Gitand MVCC

How much “Git” isin Git-for-data?

Git-for-data:
| Multi-player mode (branch, merge)

| Auditability + Time-travel (history, revert)

Git for Data: Formal Semantics of Branching,
Merging, and Rollbacks (Part 1)

How formal methods help ensure safe, reproducible workflows in data
feature_2_branch akehouses

CREATEB

CREATET

) feature_branch)—‘
o}

s main () oy

Tables are for boys, pipeline are for men

| Apachelcebergtablesare an
abstraction over data filesin
object storage, allowing atomic
table writes (through a table-level
optimistic lock).

The Mechanics of Apache Iceberg

Like all table formats, Iceberg is both a specification and a set of supporting

libraries. The specification standardizes how to represent a table as a set of

metadata and data files. Iceberg also defines a protocol for how to manipulate those

files while safeguarding data consistency - this protocol is not fully documented in

the specification but exists in the Iceberg code itself.

An Iceberg table’s files are split between a metadata layer and a data layer, both

stored in an object store such as S3. The difference with Iceberg is that commits are

performed against a catalog component.

Data / delete files

e; .
Catalog | File system / object storage
|
A | Snapshots
i |
T Metadata |
| |
|
: . References
| |
| Data files V
|
|
|
|

Fig 1. A writer writes metadata that references data files and commits the
metadata’s location to a catalog.

The worst data pipeline is the one half-done

my_dag (Definition)

&> S

SOURCE FINAL

SOURCE INT.

Data abstractions are not enough

CONCURRENCY CONTROL

AND RECOVERY
IN DATABASE SYSTEMS

| Vertically integrated (monolithic)
databases controlboth data (storage)

and compute (read and writes).
Philip A. Bernstein

| Shouldn’t we also combine data with Wang Institute of Graduate Studies
compute abstractions? Vassos Hadzilacos

University of Toronto

Nathan Goodman

Kendall Square Research Corporation

Data abstractions are not enough

Vertically integrated (monolithic)
databases controlboth data (storage)
and compute (read and writes).

Shouldn’t we also combine data with
compute abstractions?

SELECT balance
FROM accounts
WHERE id=1

Alice

SELECT balance

FROM accounts
WHERE id=2

»

Account 1 balan e-soo\—/

500 reads from snapshot!
Account 2 balance=500 \ / \
»

UPDATE
SET balan
WHERE d 1

UPDATE
+100 SET balan b l nce 100

WHERE id=2

/

Run = branch + writes

y_dag (Definition)
<>f”+D—]
otomic
UPC‘OH'EG SOURCE FINAL
- 1() - g()

SOURCE INT.

SOURCE

Run = branch + writes

my_dag (Definition)

f()
<> ﬂ- *EI
SOURCE FINAL

Fallure: main
is untouched

SOURCE INT.

SOURCE

=) How much “database”

>bauplan run

feature_branch

ey

4

sin Git-for-data?

/

u tmp_branch > — l‘— m l‘\
.

'We have discovered a +r'ul>/ mar-velous IDF'OO—P of this, which this slide is too narrow to contain”

Lightweight formal models to verify data

consistency in the face of failure, and run
automated checks as we add new primitives!

$modellnputs: 1
$modelOutputs: 1
$next: 1

$next: 3

$prev: 1

$prev: 3
$runModels: 1
columns: 2
commit: 1
function: 1
input: 1

mode: 1
models: 1
output: 1
pipeline: 1
rows: 1

tables: 1

values: 1

TTIMM TN Ay W

Function

-V AT AN

Run

($successfulReadRun_r)

/)ipeli e

Pipeline

modely [0]

Model

mode

gfd/Table

.
I syl
$runModels [0] (gt iMainos,
l
:commit
I
| - I
Read | gfd/Commit0 !
($first) :(sconsistentStates) :
| — ‘l_ ______
'ltables [gfd/Ta
$ihext Il
Sprev g
Append Populate Dro gfd /Snapshot0
($first) ($last) P ($ existingSnapshots)
rev next
columns
$hext $neky/ Sprev
$Sprev
Replace
($last) Create gfd /Colur

$modellnputs: 1
$modelOutputs: 1
$next: 1
$next: 3
$prev: 1
$prev: 3
$runModels: 1
branch: 1
columns: 2
commit: 1
function: 1
input: 1
mode: 1
models: 1
nextStep: 1
output: 1
pipeline: 1
rows: 1
status: 1
tables: 1
values: 1

Run
($activeRuns, $successfulReadRun_r)
X %
\ nextSte
e \\next ‘P\branch
\\ \\\
N S
Basszey
Read I
. . . I
0 Pipeline ($first) | gfd/Main0 }
----- 1\--
$runModels [0] \
N commit
next \
Sprev
| |
gfd/Commit0
Model Drop :(SconsistentStates) s
| VO — _____.l
\
mode \ tables [gfd,
\\
\
4
X Append Populate gfd/Snapsh
Function $nfodellnputs ($first) ($last) $n¢xt ($existingSnap
Sprev
ot $modelOutputs o \
put next Sne
Sprev '
gfd/Table Sepiste Create |
(Slast)

'+ is one ot the chiet merits ot
PY‘OO—PG that +hey instill a certain
skepticism as to the result Proveol."

B Russell

How much “database” isin Git-for-data?

Deiener'aﬂ'e branches
(o H

ip side of aborted,

reachaoble states)
bad_branch

N

> run my_dag

s o Ju @)

SOURCE

9

SOURCE INT.

We barely scratched the surface!

Want to know more?

20235
o CDMS@VLDB 2023
2024

o SIGMOD 2024
o MIDDLEWARE 2024 (with UMadison-Wisconsin)
e BIG DATA 2024

2025

o UNDERREVIEW 2025 (with UMadison-Wisconsin)
o CODMS@VLDB 2025 (with UChicago)

https://arxiv.org/pdf/2308.05368
https://arxiv.org/pdf/2404.13682
https://arxiv.org/pdf/2410.17465
https://arxiv.org/abs/2411.08203
https://arxiv.org/abs/2504.06151
https://arxiv.org/abs/2505.13750

Shipping at scale and speed mostly
means knowing which corners to cut

Composability accelerate
time-to-market, butrequires a
nuanced testing culture

Formal methods are great, but still “too
expensive”: Al to the rescue or something
else?

'+ is hot worth an inteligent man's
time to be in the majorier. =
delinition, there are a\ready
enough people to do that'

G.H Har'c/y

| jacopo.tagliabue@bauplanlabs.com

| We are hiring!

