
How Do We Sleep at Night?
Building Reliable Distributed Systems at Startup Speed

SRDS 44th International Symposium on Reliable Distributed Systems
01.10.25

Ciao, I’m Jacopo!
| Co-founder and CTO at Bauplan.

Backed by IE, SPC, Wes McKinney, Spencer Kimball, Chris Re et al..

| Started the “Reasonable Scale” movement.
Co-founder at Tooso and lead AI at TSX:CVO after the acquisition.

| 10 years up and down the stack in R&D, product, open source
ICML, KDD, VLDB, NAACL, SIGIR, WWW et al.., >2k stars, >50M+ downloads.

https://www.kmworld.com/Articles/News/News/Coveo-acquires-Tooso-combining-AI-with-ecommerce-132919.aspx

It takes a (distributed) village
| Matt, Ciro, Luca, Nate, Vlad (and others, unfortunately without a chibi) share with

me the credit for whatever value these ideas may have.

It takes a (distributed) village
| Matt, Ciro, Luca, Nate, Vlad (and others, unfortunately without a chibi) share with

me the credit for whatever value these ideas may have.
| Obviously, all the remaining mistakes are theirs 😁

Bauplan is the easiest way to build reliable,
fast cloud data pipelines.
一 No infrastructure
一 Just Python and SQL
一 Like Git, but for data

Seeing is believing

https://docs.google.com/file/d/1TWhnfK8l06QO3TnGkmb4ehgCeAFpVgMr/preview

Everybody wants to
ship “at scale”...

| Dremio

| Snowflake

| Databricks

| Fabric

Building a Data Platform

2B USD
66B
100B
???B

| Bauplan

| Dremio

| Snowflake

| Databricks

| Fabric

Building a Data Platform

...but startups make you
ship “at speed”

Building Speedrunning a Data Platform

Speedrunning > speed > composability

The Composable Data Platform

“bauplan is [a system] fully built
using composable principles (...).
It is refreshing to learn about a
real-life system built using such
architectural principles”

Reviewer 2

Inside a bauplan run

A single run spans
hundreds of traces,
across dozens of
services, ranging from
hyper-scaler PaaS to
obscure open-source
libraries.

Speedrunning > speed > composability > fragility?

Move fast AND do not break things

Bauplan “at scale”

📊 ~150k bauplan import

󰝋 ~180k bauplan run

 🔀 ~250k bauplan branch

1 month

The interest rate on composability

CONTROL PLANE

PLANNER
1.3

RESOLVER

1.4.1

CATALOG
1.4.2

worker II

worker I

COMMANDER
1.2

storage

1 2

3

DATA PLANE

Composability is NOT a get-out-of-jail
card:

| You need to work with the
community and learn the ropes
(technically, culturally).

| You need to adapt, improve,
maintain components.

| You contribute back whenever
possible.

The interest rate on composability

25×
faster!

The dependency plane

How battle tested this is?

C
an

 i
un

-f
**

k
th

ing
s

m
ys

el
f?

Cloud services:
S3, Fargate, EC2, RDS

Stock OS (stable): PyIceberg

Stock OS (fringe): Kuzu

Forked OS: Nessie, DuckDb

Internal modules: control plane,
custom FaaS runtime

The testing line

- Unit tests
- Small integration tests

End-to-End tests

Simulations

Formal proof

��
��

��
��

Unit Tests

How battle tested this is?

C
an

 i
un

-f
**

k
th

ing
s

m
ys

el
f?

Cloud services:
S3, Fargate, EC2, RDS

Stock OS (stable): PyIceberg

Stock OS (fringe): Kuzu

Forked OS: Nessie, DuckDb

Internal modules: control plane,
custom FaaS runtime��

��

��

End-to-end tests

How battle tested this is?

C
an

 i
un

-f
**

k
th

ing
s

m
ys

el
f?

Cloud services:
S3, Fargate, EC2, RDS

Stock OS (stable): PyIceberg

Stock OS (fringe): Kuzu

Forked OS: Nessie, DuckDb

Internal modules: control plane,
custom FaaS runtime��

��

��

��

��

��

��

��

Simulations

How battle tested this is?

C
an

 i
un

-f
**

k
th

ing
s

m
ys

el
f?

Cloud services:
S3, Fargate, EC2, RDS

Stock OS (stable): PyIceberg

Stock OS (fringe): Kuzu

Internal modules: control plane,
custom FaaS runtime��

��

��

��

��

��

��

��

��
Forked OS: Nessie, DuckDb

Formal proofs

How battle tested this is?

C
an

 i
un

-f
**

k
th

ing
s

m
ys

el
f?

Cloud services:
S3, Fargate, EC2, RDS

Stock OS (stable): PyIceberg

Stock OS (fringe): Kuzu

Internal modules: control plane,
custom FaaS runtime��

��

��

��

��

��

��

��

��
�� ��

Forked OS: Nessie, DuckDb

Speedrunning > speed > composability > fragility
testability

󰟯

A tale of two systems: Git and MVCC

How much “Git” is in Git-for-data?

feature_2_branch

main

CREATE T

CREATE B

feature_branch

Git-for-data:

| Multi-player mode (branch, merge)

| Auditability + Time-travel (history, revert)

Tables are for boys, pipeline are for men

| Apache Iceberg tables are an
abstraction over data files in
object storage, allowing atomic
table writes (through a table-level
optimistic lock).

The worst data pipeline is the one half-done

main

my_dag (Definition)

FINALINT.SOURCE

f() g()

f() g()

INT.

> run my_dag

SOURCE

Data abstractions are not enough

| Vertically integrated (monolithic)
databases control both data (storage)
and compute (read and writes).

| Shouldn’t we also combine data with
compute abstractions?

Data abstractions are not enough

| Vertically integrated (monolithic)
databases control both data (storage)
and compute (read and writes).

| Shouldn’t we also combine data with
compute abstractions? feature_2_branch

feature_branch

Run = branch + writes

main

my_dag (Definition)

FINALINT.SOURCE

f() g()

f() g()

INT.

> run my_dag

SOURCE

temp_branch

SOURCE

Success:
atomic
updates

merge

Run = branch + writes

main

my_dag (Definition)

FINALINT.SOURCE

f() g()

f() g()

INT.

> run my_dag

SOURCE

temp_branch

SOURCE

Failure: main
is untouched

How much “database” is in Git-for-data?

main

feature_branch

tmp_branch>bauplan run

“We have discovered a truly marvelous proof of this, which this slide is too narrow to contain”

Lightweight formal models to verify data
consistency in the face of failure, and run

automated checks as we add new primitives!

“It is one of the chief merits of
proofs that they instill a certain
skepticism as to the result proved.”

B. Russell

How much “database” is in Git-for-data?

Degenerate branches
(a flip side of aborted,

reachable states)

main

INT.

> run my_dag

SOURCE

temp_branch

SOURCE

merge

bad_branch

We barely scratched the surface!

Want to know more?

2023
● CDMS@VLDB 2023

2024
● SIGMOD 2024
● MIDDLEWARE 2024 (with UMadison-Wisconsin)
● BIG DATA 2024

2025
● UNDER REVIEW 2025 (with UMadison-Wisconsin)
● CDMS@VLDB 2025 (with UChicago)

https://arxiv.org/pdf/2308.05368
https://arxiv.org/pdf/2404.13682
https://arxiv.org/pdf/2410.17465
https://arxiv.org/abs/2411.08203
https://arxiv.org/abs/2504.06151
https://arxiv.org/abs/2505.13750

Shipping at scale and speed mostly
means knowing which corners to cut

Composability accelerate
time-to-market, but requires a

nuanced testing culture

Formal methods are great, but still “too
expensive”: AI to the rescue or something

else?

“It is not worth an intelligent man's
time to be in the majority. By
definition, there are already
enough people to do that.”

G.H. Hardy

| jacopo.tagliabue@bauplanlabs.com

| We are hiring!

