Move fast and test things Well-rounded evaluation for recommendation engines

Jacopo Tagliabue ADKDD, 07/08/2023

Ciao!

Serial Entrepreneur

- Founder of Tooso, acquired by <u>TSX:CV0</u>
 Led AI at Coveo from growth to IPO
- Now building <a>Bauplan! 0

R&D at Reasonable Scale

- 25+ papers in 3 years on ML/NLP/IR (best 0 paper at NAACL 21)
 - Collaborations with Stanford, NVIDIA,
- Mozilla, Farfetch, Microsoft, etc. Organizer of SIGIR eCommerce and <u>EvalRS</u> Adj. Prof. of <u>MLSys at NYU</u> 0

```
Ο
```

Open source

- Released 3 massive e-commerce IR datasets 0
- Trained the 1st industry-aware CLIP, 0 FashionCLIP (~500k downloads in 3 months!)

It takes a (distributed) village

- While I am the only speaker today, Patrick-John, Federico, Chloe and Ciro (and others, unfortunately without a chibi) share with me the credit for whatever value these ideas may have.
- Obviously, all the remaining mistakes are theirs 😁

Testing ML systems is hard (2d20 malus for IR)

Brenan Keller @brenankeller

A QA engineer walks into a bar. Orders a beer. Orders 0 beers. Orders 9999999999 beers. Orders a lizard. Orders -1 beers. Orders a ueicbksjdhd.

First real customer walks in and asks where the bathroom is. The bar bursts into flames, killing everyone.

4:21 PM \cdot Nov 30, 2018 \cdot Twitter for iPhone

IR is everywhere

38% of users stop shopping if shown non-relevant recommendations.*

*According to people selling RecSys APIs.

70% of people receive irrelevant ads once a month.*

*According to what I googled on my plane.

Why Are You Seeing So Many Bad Digital Ads Now?

Scrolling past ads has rarely been enjoyable. But in recent months, people say the experience seems so much worse.

Testing Matters*

*According to an editorial citing Tagliabue *et al* (2022).

nature machine intelligence

Explore content V About the journal V Publish with us V

<u>nature</u> > <u>nature machine intelligence</u> > <u>editorials</u> > article

Editorial Published: 23 February 2023

Algorithmic recommendations, anyone?

Why do we even test?

- 1. Generalization
- 2. Model comparison

Testing checklist

- 1. Create a train / test split and train a model
- 2. Loop over test cases with ground truths and count "successes"
- 3. Make a decision based on the final number: Model A KPI is 0.424, B is 0.41, therefore A > B

Predictions

G. Truth

Eval

Lies, big lies, IR metrics

1. Create a train / test split and train a model

- 2. Loop over test cases with ground truths and count "successes"
- 3. Make a decision based on the final number: Model A KPI is 0.424, B is 0.41, therefore A > B

Predictions Model B

Input G. Truth

Predictions Model A

The importance of being "less wrong"

1. Create a train / test split and train a model

- 2. Loop over test cases with ground truths and count "successes"
- 3. Make a decision based on the final number: Model A KPI is 0.424, B is 0.41, therefore A > B

Hit Rate is deceitful above all things

- 1. Create a train / test split and train a model
- 2. Loop over test cases with ground truths and count "successes"
- 3. Make a decision based on the final number: Model A KPI is 0.424, B is 0.41, therefore A > B

Why do we even test? 1. Generalization 2. Model comparison

Testing Re-Imagined*

* In theory, there is no difference between theory and practice. In practice, there is.

Beyond NDCG: behavioral testing of recommender systems with RecList

Patrick John Chia* Coveo Canada pchia@coveo.com Jacopo Tagliabue Coveo Labs United States jtagliabue@coveo.com

Chloe He Stanford University United States chloehe@stanford.edu

ABSTRACT

As with most Machine Learning systems, recommender systems are typically evaluated through performance metrics computed over held-out data points. However, real-world behavior is undoubtedly muanced: *ad hoc* error analysis and tests must be employed to ensure the desired quality in actual deployments. We introduce RecList, a sting methodology providing a general plug-and-play framework Federico Bianchi Bocconi University Italy f.bianchi@unibocconi.it

Brian Ko KOSA AI United States sangwoo@kosa.ai

bar bursts into flames, killing everyone" – B. Keller (random tweet).

In recent years, recommender systems (hence **RSs**) have played an indispensable role in providing personalized digital experiences to users, by fighting information overload and helping with navigating inventories often made of millions of items [5, 9, 26, 36, 39]. RSs' ability to generalize, both in industry and academia, is ofter

From point-wise to bin-wise metrics

• Instead of reporting just HR over the full distribution, report HR per frequency!

Table 1: Results for a complementary RecList.					
Test	P2V	G00	S1		
HR@10	0.197	0.199	0.094		
MRR@10	0.091	0.102	0.069		
Coverage@10	1.01e-2	1.99-e2	3.00e-3		
Popularity Bias@10	9.91e-5	1.41e-4	1.20e-4		

From point-wise to category-wise metrics

• Instead of reporting just HR over the full distribution, report HR per item type!

Table 1: Results for a complementary RecList.					
Test	P2V	G00	S1		
HR@10	0.197	0.199	0.094		
MRR@10	0.091	0.102	0.069		
Coverage@10	1.01e-2	1.99-e2	3.00e-3		
Popularity Bias@10	9.91e-5	1.41e-4	1.20e-4		

How do we know when something is "less wrong"?

- Ideally, we would just ask people to provide similarity judgements for the mistakes! But that does not scale:
 - Use representational learning and approximate relevance as distance in the underlying space (2022);
 - \circ $\,$ Ask a Large Language Model (2023).

Input G. Truth

Meet RecList*

* Talk is cheap, show me the code

from reclist.datasets import CoveoDataset
from reclist.recommenders.prod2vec import CoveoP2VRecModel
from reclist.reclist import CoveoCartRecList

coveo_dataset = CoveoDataset()

```
model = CoveoP2VRecModel()
model.train(coveo_dataset.x_train)
```

instantiate rec_list object

rec_list = CoveoCartRecList(
 model=model,
 dataset=coveo_dataset

invoke rec_list to run tests
rec_list(verbose=True)

The RecList project

 <u>RecList</u> spawned a popular open source package, the CIKM 2022 data challenge, the EVALRS23@KDD workshop, and three papers.

Explore content ~	About the journal 🗸	Publish with us \checkmark	Subscribe
nature > nature mad	hine intelligence > chall	lenge accepted > artic	le
Challenge Accepted	Published: 26 January	2023	
A challenge	e for rounded	evaluation o	frecommender
i enanenge			

Official Repository for EvalRS @ KDD 2023, the Second Edition of the workshop on well-rounded evaluation of

EvalRS23

ROUNDED EVALUATION

F RECOMMENDER

README.md

recommender systems.

CO Open in Colab

EvalRS-KDD-2023

EvalRS @ KDD: papers, hackathon, party

- 2 keynotes
- 5 talks
- 1 new open dataset
- \$2500 in hackathon prizes
- Unlimited* drinks

* Conditions apply!

https://reclist.io/kdd2023-cup/

Come for the papers, stay for the drinks!

Check out / share / add a star to our open source projects! Wanna work with us? Get in touch!

BAUPLAN